Abstract

Interferon (IFN)-induced transmembrane protein 3 (IFITM3) is a cell-intrinsic factor that limits influenza virus infections. We previously showed that IFITM3 degradation is increased by its ubiquitination, though the ubiquitin ligase responsible for this modification remained elusive. Here, we demonstrate that the E3 ubiquitin ligase NEDD4 ubiquitinates IFITM3 in cells and in vitro. This IFITM3 ubiquitination is dependent upon the presence of a PPxY motif within IFITM3 and the WW domain-containing region of NEDD4. In NEDD4 knockout mouse embryonic fibroblasts, we observed defective IFITM3 ubiquitination and accumulation of high levels of basal IFITM3 as compared to wild type cells. Heightened IFITM3 levels significantly protected NEDD4 knockout cells from infection by influenza A and B viruses. Similarly, knockdown of NEDD4 in human lung cells resulted in an increase in steady state IFITM3 and a decrease in influenza virus infection, demonstrating a conservation of this NEDD4-dependent IFITM3 regulatory mechanism in mouse and human cells. Consistent with the known association of NEDD4 with lysosomes, we demonstrate for the first time that steady state turnover of IFITM3 occurs through the lysosomal degradation pathway. Overall, this work identifies the enzyme NEDD4 as a new therapeutic target for the prevention of influenza virus infections, and introduces a new paradigm for up-regulating cellular levels of IFITM3 independently of IFN or infection.

Highlights

  • Interferon (IFN)-induced transmembrane protein 3 (IFITM3) is a 15 kDa protein that restricts cellular infection by influenza virus [1,2,3]

  • Our results indicate that the E3 ubiquitin ligase NEDD4 decreases baseline IFITM3 levels by ubiquitinating IFITM3 and promoting its turnover

  • To explore the possibility that NEDD4 ubiquitinates IFITM3, we first examined whether IFITM3 and NEDD4 are in proximity to one another within cells

Read more

Summary

Introduction

Interferon (IFN)-induced transmembrane protein 3 (IFITM3) is a 15 kDa protein that restricts cellular infection by influenza virus [1,2,3]. IFITM3 localizes to endosomes and lysosomes [15,16,17], and traps endocytosed virus particles within these degradative compartments by impeding the formation of the virus fusion pore [16,18,19]. Even with this potent mechanism by which IFITM3 limits infections, influenza virus remains a significant health concern [20,21]. The inability to up-regulate IFITM3 levels independently of infection or IFNs is a challenge preventing the field from harnessing the activity of IFITM3 for infection prevention

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call