Abstract

T cell unresponsiveness or anergy is one of the mechanisms that maintain inactivity of self-reactive lymphocytes. E3 ubiquitin ligases are important mediators of the anergic state. The RING finger E3 ligase GRAIL is thought to selectively function in anergic T cells but its mechanism of action and its role in vivo are largely unknown. We show here that genetic deletion of Grail in mice leads not only to loss of an anergic phenotype in various models but also to hyperactivation of primary CD4(+) T cells. Grail(-/-) CD4(+) T cells hyperproliferate in vitro to TCR stimulation alone or with concomitant anti-CD28 costimulation, with transient increased survival. In vitro differentiated T helper 1 cells show slight but significant hypersecretion of IFN-gamma in Grail(-/-) mice whereas Th2 and Th17 cytokine secretions are unchanged. Consistent with defective in vitro anergy, oral tolerance is abolished in vivo in OT-II TCR transgenic Grail(-/-) mice fed with ovalbumin. In experimental allergic encephalitis, a model of organ-specific autoimmunity, oral tolerization with myelin basic protein was abrogated as well in Grail(-/-) mice. On the protein level, Grail(-/-) naïve T cells show no significant differences of total and phosphorylated levels of ZAP70, phospholipase Cgamma1, and MAP kinases p38 and JNK but elevated baseline levels of MAP kinase ERK1/2. In summary, we define a role for GRAIL in primary T cell activation, survival, and differentiation. In addition, we formally prove an indispensable role for GRAIL in T cell anergy and oral tolerance-a promising, antigen-specific strategy to treat autoimmune diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.