Abstract

The E2F2 transcription factor can accelerate cell proliferation and wound healing. However, its mechanism of action in a diabetic foot ulcer (DFU) remains unclear. Therefore, this study explores the influence of E2F2 on wound healing in DFU by examining cell division cycle-associated 7-like (CDCA7L) expression. CDCA7L and E2F2 expression in DFU tissues were analyzed with databases. CDCA7L and E2F2 expression were altered in human umbilical vein endothelial cells (HUVECs) and spontaneously transformed human keratinocyte cell culture (HaCaT) cells. Cell viability, migration, colony formation, and angiogenesis were evaluated. Binding of E2F2 to the CDCA7L promoter was examined. Subsequently, a diabetes mellitus (DM) mouse model was established and treated with full-thickness excision followed by CDCA7L overexpression. Wound healing in these mice was observed and recorded, and vascular endothelial growth factor receptor 2 (VEGFR2) and hematopoietic progenitor cell antigen CD34 (CD34) expression were determined. E2F2 and CDCA7L expression levels in cells and mice were evaluated. The expression of growth factors was tested. CDCA7L expression was downregulated in DFU tissues and wound tissues from DM mice. Mechanistically, E2F2 bound to the CDCA7L promoter to upregulate CDCA7L expression. E2F2 overexpression enhanced viability, migration, and growth factor expression in HaCaT cells and HUVECs, and augmented HUVEC angiogenesis and HaCaT cell proliferation, which was nullified by silencing CDCA7L. In DM mice, CDCA7L overexpression facilitated wound healing and elevated the expression level of growth factors. E2F2 facilitated cell proliferation and migration and fostered wound healing in DFU cells through binding to the CDCA7L promoter.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call