Abstract

In this paper, tert-amyl alcohol was employed to directly react with metal chlorides for the preparation of oxide nanoparticles. Some typical metal oxide or hydroxides with different morphologies, such as TiO(2) nanoparticles, TiO(2) nanorods, FeOOH nanowires, Fe(2)O(3) nanoparticles, and SnO(2) nanoparticles, can be easily fabricated through such simple chemical reactions. E1 reaction was found to play the leading role in the synthesis of metal oxides attributed to better stability of tertiary carbocations in tert-amyl alcohol and the strong interaction of metal chlorides with hydroxyl groups that results in the easy dissociation of carbon-oxygen bonds in tert-amyl alcohol. S(N)1 reaction can also occur in certain reactions due to nucleophilic substitution of chloride ions for hydroxyl groups. As-prepared metal oxides show good compatibility with an aqueous system while they were synthesized in a non-hydrophilic solvent probably attributed to the specific E1 reaction mechanism involving the generation of water, and can be directly incorporated into an aqueous soluble polymer, such as PVA, to exhibit many promising applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call