Abstract
A relativistic many-body method is developed to calculate energy and transition rates for multipole transitions in many-electron ions. This method is based on relativistic many-body perturbation theory (RMBPT), agrees with MCDF calculations in lowest order, includes all second-order correlation corrections, and includes corrections from negative-energy states. Reduced matrix elements, oscillator strengths, and transition rates are calculated for electric-dipole (E1) and electric-quadrupole (E2) transitions, and magnetic-dipole (M1) and magnetic-quadrupole (M2) transitions in Ni-like ions with nuclear charges ranging from Z = 30 to 100. The calculations start from a 1s22s22p63s23p63d10 DiracFock potential. First-order perturbation theory is used to obtain intermediate-coupling coefficients, and second-order RMBPT is used to determine the matrix elements. The contributions from negative-energy states are included in the second-order E1, M1, E2, and M2 matrix elements. The resulting transition energies and transition rates are compared with experimental values and withresults from other recent calculations.PACS Nos.: 32.30.Rj, 32.70.Cs, 32.80.Rm, 34.70.+e
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.