Abstract

WSN plays vital role from small range healthcare surveillance systems to largescale environmental monitoring. Its design for energy constrained applications is a challenging issue. Sensors in WSNs are projected to run separately for longer periods. It is of excessive cost to substitute exhausted batteries which is not even possible in antagonistic situations. Multiprocessors are used in WSNs for high performance scientific computing, where each processor is assigned the same or different workload. When the computational demands of the system increase then the energy efficient approaches play an important role to increase system lifetime. Energy efficiency is commonly carried out by using proportionate fair scheduler. This introduces abnormal overloading effect. In order to overcome the existing problems E-token Energy-Aware Proportionate Sharing (EEAPS) scheduling is proposed here. The power consumption for each thread/task is calculated and the tasks are allotted to the multiple processors through the auctioning mechanism. The algorithm is simulated by using the real-time simulator (RTSIM) and the results are tested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.