Abstract

Wearable electronics is an emerging field in academics and industry, in which electronic devices, such as smartwatches and sensors, are printed or embedded within textiles. The electrical circuits in electronics textile (e-textile) should withstand many cycles of bending and stretching. Direct printing of conductive inks enables the patterning of electrical circuits; however, while using conventional nanoparticle-based inks, printing onto the fabric results in a thin layer of a conductor, which is not sufficiently robust and impairs the reliability required for practical applications. Here, we present a new process for fabricating robust stretchable e-textile using a thermodynamically stable, solution-based copper complex ink, which is capable of full penetrating the fabric. After printing on knitted stretchable fabrics, they were heated, and the complex underwent an intermolecular self-reduction reaction. The continuously formed metallic copper was used as a seed layer for electroless plating (EP) to form highly conductive circuits. It was found that the stretching direction has a significant role in resistivity. This new approach enables fabricating e-textiles with high stretchability and durability, as demonstrated for wearable gloves, toward printing functional e-textile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call