Abstract

Endoplasmic reticulum (ER)-plasma membrane (PM) contact sites/junctions play important roles in cell physiology including signal transduction, ion and lipid transfer, and membrane dynamics. However, little is known about the dynamic regulation and functional roles of ER-PM junctions in neurons. Using a split green fluorescent protein-based membrane contact probe, we find that the density of ER-PM contact sites changes dynamically in the dendrites of hippocampal neurons undergoing long-term synaptic potentiation (LTP). We show that the Ca2±-sensing membrane tethering protein Extended Synaptotagmin 1 (E-Syt1) mediates the formation of ER-PM contact sites during LTP. We also show that E-Syt1 is required for neuronal activity-dependent surface expression of the α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-type glutamate receptors. These findings implicate ER-PM junctions in the regulation of neurotransmitter receptor trafficking and synaptic plasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call