Abstract

Selective semihydrogenation of alkynes with the Mn(I) alkyl catalyst fac-[Mn(dippe)(CO)3(CH2CH2CH3)] (dippe = 1,2-bis(di-iso-propylphosphino)ethane) as a precatalyst is described. The required hydrogen gas is either directly employed or in situ-generated upon alcoholysis of KBH4 with methanol. A series of aryl-aryl, aryl-alkyl, alkyl-alkyl, and terminal alkynes was readily hydrogenated to yield E-alkenes in good to excellent isolated yields. The reaction proceeds at 60 °C for directly employed hydrogen or at 60–90 °C with in situ-generated hydrogen and catalyst loadings of 0.5–2 mol %. The implemented protocol tolerates a variety of electron-donating and electron-withdrawing functional groups, including halides, phenols, nitriles, unprotected amines, and heterocycles. The reaction can be upscaled to the gram scale. Mechanistic investigations, including deuterium-labeling studies and density functional theory (DFT) calculations, were undertaken to provide a reasonable reaction mechanism, showing that initially formed Z-isomer undergoes fast isomerization to afford the thermodynamically more stable E-isomer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call