Abstract

Extravasation of circulating tumor cells (CTCs) from the vasculature is a key step in cancer metastasis. CTCs bind to cell adhesion molecules (CAMs) expressed by endothelial cells (ECs) for flow arrest prior to extravasation. While a number of EC-expressed CAMs have been implicated in facilitating CTC binding, this work investigated the efficacy of inhibiting cancer cell binding to human lung microvascular ECs via antibody blocking of E-selectin using antibody-functionalized gold nanoshells (NS). The antibody-functionalized gold NS were synthesized using both directional and non-directional antibody conjugation techniques with variations in synthesis parameters (linker length, amount of passivating agents, and ratio of antibodies to NS) to gain a better understanding of these properties on the resultant hydrodynamic diameter, zeta potential, and antibody loading density. We quantified the ability of E-selectin antibody-functionalized NS to bind human lung microvascular endothelial cells (HMVEC-Ls) under non-inflamed and inflamed (TNF-α) conditions to inhibit binding of triple-negative MDA-MB-231s. E-selectin-targeted NS prepared using non-directional conjugation had higher antibody loading than those prepared via directional conjugation, resulting in the conjugates having similar overall binding to HMVEC-Ls at a given antibody concentration. E-selectin-targeted NS reduced MDA-MB-231 binding to HMVEC-Ls by up to 41% as determined using an in vitro binding assay. These results provide useful insights into the characteristics of antibody-functionalized NS prepared under different conditions while also demonstrating proof of concept that these conjugates hold potential to inhibit CTC binding to ECs, a critical step in extravasation during metastasis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.