Abstract

This article describes the velocity-based motion and orientation control method for a differential-driven two-wheeled E-puck Robot (DDER) using the Multi-Objective Particle Swarm Optimization (MPSO) algorithm in the Virtual Robot Experimentation Platform (V-REP) software environment. The wheel velocities data and Infra-Red (IR) sensors reading make the multi-objective fitness functions for MPSO. We use front, left, and right IR sensors reading and right wheel velocity data to design the first fitness function for MPSO. Similarly, the front, left, and right IR sensors reading, and left wheel velocity data have been taken for making the second fitness function for MPSO. The multi-objective fitness functions of MPSO minimize the motion and orientation of the DDER during navigation. Due to the minimization of motion and orientation, the DDER covers less distance to reach the goal and takes less time. The Two-Dimensional (2D) and Three-Dimensional (3D) navigation results of the DDER among the scattered obstacles have been presented in the V-REP software environment. The comparative analysis with previously developed Invasive Weed Optimization (IWO) algorithm has also been performed to show the effectiveness and efficiency of the proposed MPSO algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.