Abstract

Osteoclasts are bone-specific polykaryons derived from myeloid precursors under the stimulation of macrophage colony stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL). E proteins are basic helix-loop-helix (bHLH) transcription factors that modulate lymphoid versus myeloid cell fate decisions. To study the role of E proteins in osteoclasts, myeloid-specific E protein gain-of-function transgenic mice were generated. These mice have high bone mass due to decreased osteoclast numbers and increased osteoclast apoptosis leading to overall reductions in resorptive capacity. The molecular mechanism of decreased osteoclast numbers and resorption is in part a result of elevated expression of CD38, a regulator of intracellular calcium pools with known antiosteoclastogenic properties, which increases sensitivity to apoptosis. In vivo, exogenous RANKL stimulation can overcome this inhibition to drive osteoclastogenesis and bone loss. In vitro-derived ET2 osteoclasts are more spread and more numerous with increases in RANK, triggering receptor expressed on myeloid cells 2 (TREM2), and nuclear factor of activated T cells, cytoplasmic 1 (NFATc1) compared to wild type. However, their resorptive capacity does not increase accordingly. Thus, E proteins participate in osteoclast maturation and survival in homeostatic bone remodeling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.