Abstract
Contouring Collaborative for Consensus in Radiation Oncology (C3RO) is a crowdsourced challenge engaging radiation oncologists across various expertise levels in segmentation. An obstacle to artificial intelligence (AI) development is the paucity of multiexpert datasets; consequently, we sought to characterize whether aggregate segmentations generated from multiple nonexperts could meet or exceed recognized expert agreement. Participants who contoured region of interest (ROI) for the breast, sarcoma, head and neck (H&N), gynecologic (GYN), or gastrointestinal (GI) cases were identified as a nonexpert or recognized expert. Cohort-specific ROIs were combined into single simultaneous truth and performance level estimation (STAPLE) consensus segmentations. ROIs were evaluated against contours using Dice similarity coefficient (DSC). The expert interobserver DSC ( ) was calculated as an acceptability threshold between and . To determine the number of nonexperts required to match the for each ROI, a single consensus contour was generated using variable numbers of nonexperts and then compared to the . For all cases, the DSC values for versus were higher than comparator expert for most ROIs. The minimum number of nonexpert segmentations needed for a consensus ROI to achieve acceptability criteria ranged between 2 and 4 for breast, 3 and 5 for sarcoma, 3 and 5 for H&N, 3 and 5 for GYN, and 3 for GI. Multiple nonexpert-generated consensus ROIs met or exceeded expert-derived acceptability thresholds. Five nonexperts could potentially generate consensus segmentations for most ROIs with performance approximating experts, suggesting nonexpert segmentations as feasible cost-effective AI inputs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.