Abstract

BackgroundU-Net includes encoder, decoder and skip connection structures. It has become the benchmark network in medical image segmentation. However, the direct fusion of low-level and high-level convolution features with semantic gaps by traditional skip connections may lead to problems such as fuzzy generated feature maps and target region segmentation errors. ObjectiveWe use spatial enhancement filtering technology to compensate for the semantic gap and propose an enhanced dense U-Net (E-DU), aiming to apply it to multimodal medical image segmentation to improve the segmentation performance and efficiency. MethodsBefore combining encoder and decoder features, we replace the traditional skip connection with a multiscale denoise enhancement (MDE) module. The encoder features need to be deeply convolved by the spatial enhancement filter and then combined with the decoder features. We propose a simple and efficient deep full convolution network structure E-DU, which can not only fuse semantically various features but also denoise and enhance the feature map. ResultsWe performed experiments on medical image segmentation datasets with seven image modalities and combined MDE with various baseline networks to perform ablation studies. E-DU achieved the best segmentation results on evaluation indicators such as DSC on the U-Net family, with DSC values of 97.78, 97.64, 95.31, 94.42, 94.93, 98.85, and 98.38 (%), respectively. The addition of the MDE module to the attention mechanism network improves segmentation performance and efficiency, reflecting its generalization performance. In comparison to advanced methods, our method is also competitive. ConclusionOur proposed MDE module has a good segmentation effect and operating efficiency, and it can be easily extended to multiple modal medical segmentation datasets. Our idea and method can achieve clinical multimodal medical image segmentation and make full use of image information to provide clinical decision support. It has great application value and promotion prospects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.