Abstract
ABSTRACTWearable devices have been widely used in many fields to improve the quality of people’s lives. More and more data on individuals and businesses are collected by statistical organizations though those devices. Almost all of this data holds confidential information. Statistical Disclosure Control (SDC) seeks to protect statistical data in such a way that it can be released without giving away confidential information that can be linked to specific individuals or entities. The MDAV (Maximum Distance to Average Vector) algorithm is an efficient micro-aggregation algorithm belonging to SDC. However, the MDAV algorithm cannot survive homogeneity and background knowledge attacks because it was designed for static numerical data. This paper proposes a systematic dynamic-updating anonymity algorithm based on MDAV called the e-DMDAV algorithm. This algorithm introduces a new parameter and a table to ensure that the k records in one cluster with the range of the distinct values in each cluster is no less than e for numerical and non-numerical datasets. This new algorithm has been evaluated and compared with the MDAV algorithm. The simulation results show that the new algorithm outperforms MDAV in terms of minimizing distortion and disclosure risk with a similar computational cost.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.