Abstract

The rapid development of Internet information technology has made e-commerce enterprises face complex and changing financial problems. Combining artificial intelligence algorithms and dynamic monitoring of financial risks has been a current research hotspot. Based on this, this paper conducts an empirical study with a sample of listed Chinese e-commerce enterprises from 2012 to 2022. Firstly, using factor analysis (FA) to obtain the common factors between the original financial and non-financial indicators has the effect of reducing the overfitting risk of the model. Secondly, the mean square error (MSE) of the output and predicted values of the Long Short-Term Memory neural network (LSTM) is used as the fitness function of the intelligent swarm optimization algorithm, and then the Particle Swarm Optimization (PSO) algorithm is used to optimize the learning rate (LR) and the number of hidden layer neurons in the Long Short-Term Memory (LSTM) neural network. Finally, a financial risk prediction model based on FA-PSO-LSTM deep learning is constructed, and multiple benchmark models are introduced for comparative analysis on each evaluation index. The study shows that for nonlinear multivariate data with complex structure, the fused deep learning model proposed in this paper achieves the lowest values in mean square error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). This indicates that the model has the best prediction effect, which is helpful to help managers make relevant decisions efficiently and scientifically and make the enterprise sustainable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.