Abstract

Ribonucleotide reductase (RNR), which supplies the building blocks for DNA biosynthesis and its repair, has been linked to human diseases and is emerging as a therapeutic target. Here, we present a mechanistic investigation of triapine (3AP), a clinically relevant small molecule that inhibits the tyrosyl radical within the RNR β2 subunit. Solvent kinetic isotope effects reveal that proton transfer is not rate-limiting for inhibition of Y122· of E. coli RNR β2 by the pertinent 3AP-Fe(II) adduct. Vibrational spectroscopy further demonstrates that unlike inhibition of the β2 tyrosyl radical by hydroxyurea, a carboxylate containing proton wire is not at play. Binding measurements reveal a low nanomolar affinity (Kd ∼ 6 nM) of 3AP-Fe(II) for β2. Taken together, these data should prompt further development of RNR inactivators based on the triapine scaffold for therapeutic applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call