Abstract
Peptide detection methods with facility and high sensitivity are essential for diagnosing disease associated with peptide biomarkers. Nanopore sensing technology had emerged as a low cost, high-throughput, and scalable tool for peptide detection. The omptins family proteins which can form β-barrel pores have great potentials to be developed as nanopore biosensor. However, there are no study about the channel properties of E. coli OmpT and the development of OmpT as a nanopore biosensor. In this study, the OmpT biological nanopore channel was constructed with a conductance of 1.49 nS in 500 mM NaCl buffer and a three-step gating phenomenon under negative voltage higher than 100 mV and then was developed as a peptide biosensor which can detect peptide without the interfere of ssDNA and dNTPs. The OmpT constructed in this study has potential application in peptide detection, and also provides a new idea for the detection of peptides using the specific binding ability of protease.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Biochemical and Biophysical Research Communications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.