Abstract
The reduction of oxygen to water is crucial to life and a central metabolic process. To fulfil this task, prokaryotes use among other enzymes cytochrome bd oxidases (Cyt bds) that also play an important role in bacterial virulence and antibiotic resistance. To fight microbial infections by pathogens, an in-depth understanding of the enzyme mechanism is required. Here, we combine bioinformatics, mutagenesis, enzyme kinetics and FTIR spectroscopy to demonstrate that proton delivery to the active site contributes to the rate limiting steps in Cyt bd-I and involves Asp58 of subunit CydB. Our findings reveal a previously unknown catalytic function of subunit CydB in the reaction of Cyt bd-I.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.