Abstract

Psoriasis is the most prevalent inflammatory skin disorders, affecting 1–3% of the worldwide population. We previously reported that topical application of methyl 4-(adenin-9-yl)-2-hydroxybutanoate (DZ2002), a reversible S-adenosyl-l-homocysteine hydrolase (SAHH) inhibitor, was a viable treatment in murine psoriatic skin inflammation. In current study, we further explored the mechanisms of DZ2002 on keratinocyte dysfunction and skin infiltration, the key pathogenic events in psoriasis. We conducted genome-wide DNA methylation analysis in skin tissue from imiquimod (IMQ)-induced psoriatic and normal mice, demonstrated that topical administration of DZ2002 directly rectified aberrant DNA methylation pattern in epidermis and dermis of psoriatic skin lesion. Especially, DZ2002 differentially regulated DNA methylation of GATA3 and LCN2 promoters, which maintained keratinocytes differentiation and reduced inflammatory infiltration in psoriatic skin respectively. In vitro studies in TNF-α/IFN-γ-elicited HaCaT manifested that DZ2002 treatment rectified compromised keratinocyte differentiation via GATA3 enhancement and abated chemokine expression by reducing LCN2 production under inflammatory stimulation. Chemotaxis assays conducted on dHL-60 cells confirmed that suppression of LCN2 expression by DZ2002 was accompanied by CXCR1 and CXCR2 downregulation, and contributed to the inhibition of CXCL8-driven neutrophils migration. In conclusion, therapeutic benefits of DZ2002 are achieved through differentially regulating DNA methylation of GATA3 and LCN2 promoters in psoriatic skin lesion, which efficiently interrupt the pathogenic interplay between keratinocytes and infiltrating immune cells, thus maintains epidermal keratinocytes differentiation and prevents dermal immune infiltration in psoriatic skin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call