Abstract
The Cu single-atom catalyst (SAC) supported on TiO2 exhibits outstanding efficacy in photocatalytic hydrogen evolution. The precise operational mechanism remains a subject of ongoing debate. The focus resides with the interplay linking heightened catalytic activity, dynamic valence state alterations of Cu atoms, and their hybridization with H2O orbitals, manifested in catalyst color changes. Taking anatase TiO2 (101) as a prototypical surface, we perform ab initio quantum dynamics simulation to reveal that the high activity of the Cu-SAC is due to the quasi-planar coordination structure of the Cu atom after H2O adsorption, allowing it to trap photoexcited hot electrons and inject them into the hybridized orbital between Cu and H2O. The observed alterations in the valence state and the coloration can be attributed to the H atom released during H2O dissociation and adsorbed onto the lattice O atom neighboring the Cu-SAC. Notably, this adsorption of H atoms puts the Cu-SAC into an inert state, as opposed to an activating effect reported previously. Our work clarifies the relationship between the high photocatalytic activity and the local dynamic atomic coordination structure, providing atomistic insights into the structural changes occurring during photocatalytic reactions on SACs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.