Abstract

Duchenne and Becker muscular dystrophy patients often develop a cardiomyopathy for which the pathogenesis is still unknown. We have employed the murine animal model of Duchenne muscular dystrophy (mdx), which develops a cardiomyopathy that includes some characteristics of the human disease, to study the molecular basis of this pathology. Here we show that the mdx mouse heart has defects consistent with alteration in compounds that regulate energy homeostasis including a marked decrease in creatine-phosphate (PC). In addition, the mdx heart is more susceptible to anoxia than controls. Since the cardio-protective ATP sensitive potassium channel (KATP) complex and PC have been shown to interact we investigated whether deficits in PC levels correlate with other molecular events including KATP ion channel complex presence, its functionality and interaction with dystrophin. We found that this channel complex is present in the dystrophic cardiac cell membrane but its ability to sense a drop in the intracellular ATP concentration and consequently open is compromised by the absence of dystrophin. We further demonstrate that the creatine kinase muscle isoform (CKm) is displaced from the plasma membrane of the mdx cardiac cells. Considering that CKm is a determinant of KATP channel complex function we hypothesize that dystrophin acts as a scaffolding protein organizing the KATP channel complex and the enzymes necessary for its correct functioning. Therefore, the lack of proper functioning of the cardio-protective KATP system in the mdx cardiomyocytes may be part of the mechanism contributing to development of cardiac disease in dystrophic patients.

Highlights

  • Cardiomyopathy is frequently associated with Duchenne and Becker muscular dystrophy

  • In searching for clues causing the decrease in PC and increased susceptibility to ischemia we investigated the status of the ATP sensitive potassium channel (KATP) complex since it relies on PC for its correct functioning [14] and it is involved in protection during ischemia [15,16]

  • Energy compound levels in the mdx heart are severely affected during hypoxia It has been reported that mdx mutant hearts have metabolic and signaling alterations preceding the development of the cardiomyopathy

Read more

Summary

Introduction

Cardiomyopathy is frequently associated with Duchenne and Becker muscular dystrophy. with the increased lifespan of the patients bearing such pathologies, cardiac failure is becoming one of the most frequent causes of death [1]. The murine model of Duchenne muscular dystrophy (mdx mutant mouse) bears a point mutation in the gene coding for dystrophin, which causes the premature termination of the polypeptide chain during translation [2,3]. The biochemical and physiological alterations observed in young and old mdx mice have led to a number of hypotheses to explain the pathogenesis of the cardiomyopathy. These include, altered energetics [7], perturbation in Ca++ handling [8], nitric oxide (NO) signaling alterations [9,10] and increased ROSmediated damage [11]. To date there is no evidence of a direct link between dystrophin and any of the aforementioned alterations in the heart

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call