Abstract

The cardiomyocyte membrane cytoskeleton consists of the costameric proteins that mediate force transduction from the cell to the extracellular matrix, and a sub-membrane network composed of dystrophin and associated proteins. Studies of the precise cellular distribution of dystrophin and of the consequences of genetic mutations leading to abnormal expression of the dystrophin molecule, as occurs in Duchenne and Becker's muscular dystrophies, highlight potential functional roles of this sub-membrane protein complex in cardiomyocytes. Detailed investigation of dystrophin distribution using the complementary cell imaging techniques of immunoconfocal microscopy and freeze-fracture cytochemistry at the electron-microscopical level show that, in contrast to rat cardiomyocytes, the dystrophin network in human cardiomyocytes is locally enriched at costameres. Thus located, the dystrophin network appears to have a mechanical role, involving stabilization of the peripheral plasma membrane during the repetitive distortion associated with cardiac contraction and, in the human myocyte, contributing to lateral force-transduction. Evidence from animal models of muscular dystrophy and from investigation of the interactions of the sub-membrane cytoskeleton with other membrane-associated proteins including ion channels, receptors and enzymes, further suggests a role for dystrophin in organization and regulation of membrane domains. The relative preservation of the membrane cytoskeleton in non-dystrophic dilated cardiomyopathy and in ischemic cardiomyopathy, conditions in which the myocyte contractile apparatus and internal desmin-based cytoskeleton are commonly disrupted, emphasizes the vital role of the membrane cytoskeleton in cell survival. Continued cardiomyocyte survival despite loss of contractile protein organization has implications in the potential for reversibility of left ventricular remodeling that can be achieved in the clinical setting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.