Abstract
Dystroglycan (DG) is a transmembrane receptor linking the extracellular matrix to the internal cytoskeleton. Its structural function has been mainly characterized in muscle fibers, but DG plays signaling and developmental roles also in different tissues and cell types. We have investigated the effects of dystroglycan depletion during eye development of Xenopus laevis. We have injected a specific morpholino (Mo) antisense oligonucleotide in the animal pole of one dorsal blastomere of embryos at four cells stage. Mo-mediated loss of DG function caused disruption of the basal lamina layers, increased apoptosis and reduction of the expression domains of specific retinal markers, at early stages. Later in development, morphants displayed unilateral ocular malformations, such as microphtalmia and retinal delayering with photoreceptors and ganglion cells scattered throughout the retina or aggregated in rosette-like structures. These results recall the phenotypes observed in specific human diseases and suggest that DG presence is crucial at early stages for the organization of retinal architecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.