Abstract

Early-onset dystonia is caused by mutations in the torsinA protein, a putative member of the AAA+ class of ATPases. In this study we have evaluated the ATPase activity of bacterially expressed wild-type torsinA and its disease-associated mutant forms. Upon overexpression in Escherichia coli, recombinant torsinA proteins were accumulated as insoluble inclusion bodies and required refolding to become soluble and catalytically active. The refolded wild-type and mutant torsinA proteins were capable of hydrolyzing ATP, but their specific ATPase activities differed significantly. Deletions of the amino acid residues E302/303 and F323-Y328 resulted in a decrease of ATPase activity to approximately 35% and approximately 75% of the wild-type level, respectively. ATPase activity of wild-type and mutant torsinA proteins was influenced by factors that varied with cell stress, such as temperature, pH, and ionic strength, and was inhibited by sodium vanadate. Our results provide the first direct evidence for a role of torsinA as an active ATPase and suggest that the mutations in torsinA might affect normal functions of the protein by reducing its enzymatic activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.