Abstract

Canine myxomatous mitral valve disease (MMVD) resembles the early stages of myxomatous pathology seen in human non-syndromic mitral valve prolapse, a common valvular heart disease in the adult human population. Canine MMVD is seen in older subjects, suggesting age-related epigenetic dysregulation leading to derangements in valvular cell populations and matrix synthesis or degradation. We hypothesized that valvular interstitial cells (VICs) undergo disease-relevant changes in miRNA expression. In primary VIC lines from diseased and control valves, miRNA expression was profiled using RT-qPCR and next generation sequencing. VICs from diseased valves showed phenotypic changes consistent with myofibroblastic differentiation (vimentinlow+, α-SMAhigh+), increases in senescence markers (p21, SA-β-gαl), and decreased cell viability and proliferation potential. RT-qPCR and miRNA sequencing analyses both showed significant (p<0.05) downregulation of let-7c, miR-17, miR-20a, and miR-30d in VICs from diseased valves compared to controls. Decreased let-7c, miR-17, and miR-20a may contribute to myofibroblastic differentiation in addition to cell senescence, and decreased miR-30d may disinhibit cell apoptosis. These data support the hypothesis that epigenetic dysregulation plays an important role in age-related canine MMVD.

Highlights

  • Non-syndromic mitral valve prolapse (MVP) is a common valvular heart disease with a prevalence of 3% in the human adult population [1]

  • Most MVP events are benign, ruptured chordae or poor coaptation of the valve leaflets can lead to mitral regurgitation (MR) with ensuing congestive heart failure (CHF)

  • Medical management of MR is of limited value, and mitral valve repair or replacement are most effective when provided before the onset of CHF [1]

Read more

Summary

Introduction

Non-syndromic mitral valve prolapse (MVP) is a common valvular heart disease with a prevalence of 3% in the human adult population [1]. Occurring myxomatous mitral valve disease (MMVD) in dogs closely resembles early stages of non-syndromic MVP in humans structurally, and functional consequences are similar, i.e., the development of cardiac enlargement and remodeling, and CHF at the end-stage of the disease. MMVD is the most common acquired cardiac disease and the most common cause of CHF in dogs, comprising 2/3 of all canine cardiac cases [2]. This disease is clearly age-related, with a lifetime prevalence in older dogs nearing 100% [2]. Once in CHF, dogs are reported to have a median survival time between 1 and 9 months [2]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.