Abstract
Sirtuin 3 (SIRT3) deacetylase is a key regulator for chemoresistance in acute myeloid leukemia (AML) cells due to its capability of modulating mitochondrial metabolism and reactive oxygen species (ROS). SIRT3 is de-SUMOylated by SUMO-specific peptidase 1 (SENP1), which enhances its deacetylase activity. Therefore, dysregulation of SIRT3 SUMOylation may lead to fortified chemoresistance in AML. Indeed, SIRT3 de-SUMOylation was induced by chemotherapeutic agents, which in turn, exacerbated resistance against chemotherapies in AML by activating SIRT3 via preventing its proteasome degradation. Furthermore, RNA-seq revealed that expression of a collection of genes was altered by SIRT3 de-SUMOylation including inhibition of transcription factor Hes Family BHLH Transcription Factor 1 (HES1), a downstream substrate of Notch1 signaling pathway, leading to increased fatty acids oxidation (FAO). Moreover, the SENP1 inhibitor momordin-Ic or HES1 overexpression synergized with cytarabine to eradicate AML cells in vitro and in xenograft mouse models. In summary, the current study revealed a novel role of SIRT3 SUMOylation in the regulation of chemoresistance in AML via HES1-dependent FAO and provided a rationale for SIRT3 SUMOylation and FAO targeted interventions to improve chemotherapies in AML.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.