Abstract

The role of epigenetic alteration in prostate cancer pathogenesis was reported. We aimed to analyze dysregulation of DNA methylase (DNA methyl transferase/DNMT) and demethylase (ten eleven translocase/TET) and the associated interplay between them during prostate tumorigenesis. Promoter methylation and RNA/protein expression of selected DNMT and TETs were analysed in normal prostate, benign prostatic hyperplasia (BPH), and prostate cancer (PCa). Genomic 5-hydroxymethylcytosine (5hmC) level was detected and correlated with DNMT and TET proteins. Clinicopathological association of molecular data was done. Our data revealed a very low frequency of promoter methylation for DNMT1 (5-3% and high frequency for TET1 (22–38%), TET2 (68–90 %), and TET3 (43-32 %) in BPH and PCa. The promoter methylation of DNMT1 (p = 0.019) showed a significantly decreasing trend, while that of TET1 (p = 0.0005) and TET2 (p < 0.0001) showed an increasing trend from normal prostate to BPH to PCa, indicating their epigenetic dysregulation during prostate tumorigenesis. RNA/protein overexpression of DNMT1 and reduced expression of TET1 and TET2 in PCa compared to BPH were associated with the promoter methylation status of genes. The 5hmC level was significantly lower in PCa than in BPH and correlated negatively with DNMT1 but positively with TET1 and TET2 proteins, suggesting dysregulation of DNA methylase and de-methylase activities during prostate tumorigenesis. Lastly, tumors having methylated TET1 and TET2 promoters showed advanced clinicopathological features (a higher PSA level/Gleason score) and increased risk of bone metastasis. In conclusion, DNMT1 upregulation and epigenetic silencing of TET1 and TET2 was seen during PCa development. TET1 and TET2 promoter methylation has prognostic importance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call