Abstract

Mutations in the gene encoding Cav1.4, CACNA1F, are associated with visual disorders including X-linked incomplete congenital stationary night blindness type 2 (CSNB2). In mice lacking Cav1.4 channels, there are defects in the development of “ribbon” synapses formed between photoreceptors (PRs) and second-order neurons. However, many CSNB2 mutations disrupt the function rather than expression of Cav1.4 channels. Whether defects in PR synapse development due to altered Cav1.4 function are common features contributing to the pathogenesis of CSNB2 is unknown. To resolve this issue, we profiled changes in the subcellular distribution of Cav1.4 channels and synapse morphology during development in wild-type (WT) mice and mouse models of CSNB2. Using Cav1.4-selective antibodies, we found that Cav1.4 channels associate with ribbon precursors early in development and are concentrated at both rod and cone PR synapses in the mature retina. In mouse models of CSNB2 in which the voltage-dependence of Cav1.4 activation is either enhanced (Cav1.4I756T) or inhibited (CaBP4 KO), the initial stages of PR synaptic ribbon formation are largely unaffected. However, after postnatal day 13, many PR ribbons retain the immature morphology. This synaptic abnormality corresponds in severity to the defect in synaptic transmission in the adult mutant mice, suggesting that lack of sufficient mature synapses contributes to vision impairment in Cav1.4I756T and CaBP4 KO mice. Our results demonstrate the importance of proper Cav1.4 function for efficient PR synapse maturation, and that dysregulation of Cav1.4 channels in CSNB2 may have synaptopathic consequences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call