Abstract

Dysphagia is a common toxicity after head and neck (HN) radiation therapy that negatively affects quality of life. We explored the relationship between radiation therapy dose to normal HN structures and dysphagia 1 year after treatment using image-based datamining (IBDM), a voxel-based analysis technique. We used data from 104 patients with oropharyngeal cancer treated with definitive (chemo)radiation therapy. Swallow function was assessed pretreatment and 1 year posttreatment using 3 validated measures: MD Anderson Dysphagia Inventory (MDADI), performance status scale for normalcy of diet (PSS-HN), and water swallowing test (WST). For IBDM, we spatially normalized all patients' planning dose matrices to 3 reference anatomies. Regions where the dose was associated with dysphagia measures at 1 year were found by performing voxel-wise statistics and permutation testing. Clinical factors, treatment variables, and pretreatment measures were used in multivariable analysis to predict each dysphagia measure at 1 year. Clinical baseline models were found using backward stepwise selection. Improvement in model discrimination after adding the mean dose to the identified region was quantified using the Akaike information criterion. We also compared the prediction performance of the identified region with a well-established association: mean doses to the pharyngeal constrictor muscles. IBDM revealed highly significant associations between dose to distinct regions and the 3 outcomes. These regions overlapped around the inferior section of the brain stem. All clinical models were significantly improved by including mean dose to the overlap region (P ≤ .006). Including pharyngeal dosimetry significantly improved WST (P=.04) but not PSS-HN or MDADI (P ≥ .06). In this hypothesis-generating study, we found that mean dose to the inferior section of the brain stem is strongly associated with dysphagia 1 year posttreatment. The identified region includes the swallowing centers in the medulla oblongata, providing a possible mechanistic explanation. Further work including validation in an independent cohort is required.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.