Abstract

Although non-perturbative functional methods are often associated with low energy Quantum Chromodynamics, contemporary studies indicate that they provide reliable tools to characterize a much wider spectrum of strongly interacting many-body systems. In this paper, we aim to provide a modest overview on a few notable applications of Dyson–Schwinger equations to QCD and condensed matter physics. After a short introduction, we lay out some formal considerations and proceed by addressing the confinement problem. We discuss in some detail the heavy quark limit of Coulomb gauge QCD, in particular the simple connection between the non-perturbative Green's functions of Yang–Mills theory and the confinement potential. Landau gauge results on the infrared Yang–Mills propagators are also briefly reviewed. We then focus on less common applications, in graphene and high-temperature superconductivity. We discuss recent developments, and present theoretical predictions that are supported by experimental findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.