Abstract

Dyson orbitals, their electron-binding energies, and probability factors provide descriptions of electrons in molecules that are experimentally verifiable and that generalize qualitatively useful concepts of uncorrelated, molecular-orbital theory to the exact limit of Schrödinger's time-independent equation. Dyson orbitals are defined as overlaps between initial, N-electron states and final states with N ± 1 electrons and therefore are useful in the prediction and interpretation of many kinds of spectroscopic and scattering experiments. They also are characteristic of N-electron initial states and may be used to construct electron densities, one-electron properties, and total energies with correlated Aufbau procedures that include probability factors between zero and unity. Relationships with natural orbitals, Kohn-Sham orbitals, and Hartree-Fock orbitals facilitate insights into the descriptive capabilities of Dyson orbitals. Electron-propagator approximations that employ the Dyson quasiparticle equation or super-operator secular equations enable direct determination of Dyson orbitals and obviate the need for many-electron wavefunctions of initial or final states. Numerical comparisons of the amplitudes and probability factors of Dyson orbitals calculated with several self-energy approximations reveal the effects of electron correlation on these uniquely defined, one-electron wavefunctions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.