Abstract

We report on the first in-depth analysis of a specific type of dysnumeria, number-reading deficit, in sign language. The participant, Nomi, is a 45-year-old signer of Israeli Sign Language (ISL). In reading multidigit numbers (reading-then-signing written numbers, the counterpart of reading aloud in spoken language), Nomi made mainly decimal, number-structure errors– reading the correct digits in an incorrect (smaller) decimal class, mainly in longer numbers of 5–6-digits. A unique property of ISL allowed us to rule out the numeric-visual analysis as the source of Nomi's dysnumeria: In ISL, when the multidigit number signifies the number of objects, it is signed with a decimal structure, which is marked morphologically (e.g., 84 → Eight-Tens Four); but a parallel system exists (e.g., for height, age, bus numbers), in which multidigit numbers are signed non-decimally, as a sequence of number-signs (e.g., 84 → Eight, Four). When Nomi read and signed the exact same numbers, but this time non-decimally, she performed significantly better. Additional tests supported the conclusion that her early numeric-visual abilities are intact: she showed flawless detection of differences in length, digit-order, or identity in same-different tasks. Her decimal errors did not result from a number-structure deficit in the phonological-sign output either (no decimal errors in repeating the same numbers, nor in signing multidigit numbers written as Hebrew words). Nomi had similar errors of conversion to the decimal structure in number comprehension (number-size comparison tasks), suggesting that her deficit is in a component shared by reading and comprehension. We also compared Nomi's number reading to her reading and signing of 406 Hebrew words. Nomi's word reading was in the high range of the normal performance of hearing controls and of deaf signers and significantly better than her multidigit number reading, demonstrating a dissociation between number reading, which was impaired, and word reading, which was spared. These results point to a specific type of dysnumeria in the number-frame generation for written multidigit numbers, whereby the conversion from written multidigit numbers to the abstract decimal structure is impaired, affecting both reading and comprehension. The results support abstract, non-verbal decimal structure generation that is shared by reading and comprehension, and also suggest the existence of a non-decimal number-reading route.

Highlights

  • Number reading, just like word reading, is a complex, multistaged process (McCloskey et al, 1985, 1986, 1990; Cohen et al, 1997; Dehaene et al, 2003; Dotan and Friedmann, 2018), which is essential in our everyday life (Nuerk et al, 2015)

  • Her far-better performance on reading the same numbers when she did not need to convert them to decimal structures indicates that her visual-input processes themselves are intact and cannot be the source of her deficit. Had she had a deficit in the perception of number-length or in the position of zeros, we would have expected similar errors in reading digit-bydigit—errors of omission or doubling of digits, or errors in the position of zero, which she did not show. This finding, suggesting preserved visual analysis of number-length, together with the decimal errors she made in reading the same numbers decimally, hint at a deficit related to the decimal structure, in a stage later than the numeric-visual stage

  • Interim Summary: Assessment of Nomi’s Phonological Output The above tasks indicated that Nomi’s decimal errors did not result from a deficit in phonological output processes of selecting the correct number signs including their correct decimal morphology, holding them, and assembling them into a whole multidigit number. She did not make any decimal errors in signing multidigit numbers written as Hebrew words, even though this task requires the same stages of phonological selection, holding, and assembly of complex number-signs

Read more

Summary

Introduction

Just like word reading, is a complex, multistaged process (McCloskey et al, 1985, 1986, 1990; Cohen et al, 1997; Dehaene et al, 2003; Dotan and Friedmann, 2018), which is essential in our everyday life (Nuerk et al, 2015). Previous studies reported that compared to hearing individuals, deaf individuals have difficulties with numbers, mostly in arithmetic and mathematics (Wollman, 1964; Austin, 1975; Wood et al, 1984; Titus, 1995; Frostad, 1996; Nunes and Moreno, 1998; Traxler, 2000; Davis and Kelly, 2003; Bull et al, 2011; Gottardis et al, 2011) These studies referred to the deaf population as a whole, without examining signers and they referred to perfomance in general mathematics tests, without assessing number-reading. As we show below, testing dysnumeria in sign language offers interesting insights to dysnumeria and to the number-reading model

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call