Abstract

ObjectiveReliable localization of the epileptogenic zone is necessary for successful epilepsy surgery. Neurophysiological biomarkers include ictal onsets and interictal spikes. Furthermore, the epileptic network shows oscillations with potential localization value and pathomechanistic implications. The cellular origin of such markers in invasive EEG in vivo remains to be clarified. MethodsIn the presented pilot study, surgical brain samples and invasive EEG recordings of seven patients with surgically treated Focal Cortical Dysplasia (FCD) type II were coregistered using a novel protocol. Dysmorphic neurons and balloon cells were immunohistochemically quantified. Evaluated markers included seizure onset, spikes, and oscillatory activity in delta, theta, gamma and ripple frequency bands, as well as sample entropy and phase-amplitude coupling between delta, theta, alpha and beta phase and gamma amplitude. ResultsCorrelations between histopathology and neurophysiology provided evidence for a contribution of dysmorphic neurons to interictal spikes, fast gamma activity and ripples. Furthermore, seizure onset and phase-amplitude coupling in areas with dysmorphic neurons suggests preserved connectivity is related to seizure initiation. Balloon cells showed no association. ConclusionsPhase-amplitude coupling, spikes, fast gamma and ripples are related to the density of dysmorphic neurons and localize the seizure onset zone. SignificanceThe results of our pilot study provide a new powerful tool to address the cellular source of abnormal neurophysiology signals to leverage current and novel biomarkers for the localization of epileptic activity in the human brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.