Abstract

In the dopamine-depleted striatum, an altered post-synaptic signalling of efferent neurons might underline the onset of variable dyskinetic responses to dopaminergic agonists. We have previously shown that a subchronic treatment with the D1 agonist SKF-38393 and the D2 agonist ropinirole induces a dyskinetic response of high and low intensities respectively, in 6-hydroxydopamine-lesioned rats. Here, zif-268 mRNA expression was evaluated in striatonigral and striatopallidal neurons to assess a neurochemical marker of these different dyskinetic responses upon drug administration. Acute and subchronic SKF-38393 (3mg/kg) increased zif-268 expression per neuron in the striatonigral pathway, albeit the number of neurons displaying high early-gene levels was reduced by the subchronic treatment. Zif-268 mRNA in striatopallidal neurons was not affected by SKF-38393 treatments. In contrast, ropinirole (5mg/kg) did not alter zif-268 mRNA in striatonigral neurons acutely, whereas ropinirole decreased zif-268 mRNA subchronically. Both acute and subchronic ropinirole decreased zif-268 levels in the striatopallidal pathway. The differential expression of zif-268 in striatonigral and striatopallidal neurons might provide a biochemical correlate of the dyskinetic outcome displayed by SKF-38393 and ropinirole treatments, suggesting that evaluation of neuronal responses upon drug administration provides a tool for the preclinical characterization of dyskinetic potential beyond behavioural tests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call