Abstract
Chloroplasts and mitochondria play important roles in maintaining metabolic and energy homeostasis in the plant cell. The interactions between these two organelles, especially photosynthesis and respiration, have been intensively studied. Still, little is known about the regulation of mitochondrial gene expression by chloroplasts and vice versa. The gene expression machineries in chloroplasts and mitochondria rely heavily on the nuclear genome. Thus, the interactions between nucleus and these organelles, including anterograde and retrograde regulation, have been actively investigated in the last two decades. Norflurazon (NF) and lincomycin (Lin) are two commonly used inhibitors to study chloroplast-to-nucleus retrograde signaling in plants. We used NF and Lin to block the development and functions of chloroplasts and examined their effects on mitochondrial gene expression, RNA editing and splicing. The editing of most mitochondrial transcripts was not affected, but the editing extents of nad4-107, nad6-103, and ccmFc-1172 decreased slightly in NF- and Lin-treated seedlings. While the splicing of mitochondrial transcripts was not significantly affected, steady-state mRNA levels of several mitochondrial genes increased significantly in NF- and Lin-treated seedlings. Moreover, Lin seemed to have more profound effects than NF on the expression of mitochondrial genes, indicating that signals derived from these two inhibitors might be distinct. NF and Lin also significantly induced the expression of nuclear genes encoding subunits of mitochondrial electron transport chain complexes. Thus, dysfunctional chloroplasts may coordinately up-regulate the expression of nuclear and mitochondrial genes encoding subunits of respiratory complexes.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.