Abstract
ABSTRACT Chromatin Assembly Factor I (CAF-I) plays a central role in the reassembly of H3/H4 histones during DNA replication. In S. cerevisiae CAF-I is not essential and its loss is associated with reduced gene silencing at telomeres and increased sensitivity to DNA damage. Two kinases, Cyclin Dependent Kinase (CDK) and Dbf4-Dependent Kinase (DDK), are known to phosphorylate the Cac1p subunit of CAF-I, but their role in the regulation of CAF-I activity is not well understood. In this study we systematically mutated the phosphorylation target sites of these kinases. We show that concomitant mutations of the CDK and DDK target sites of Cac1p lead to growth retardation and significant cell cycle defects, altered cell morphology and increased sensitivity to DNA damage. Surprisingly, some mutations also produced flocculation, a phenotype that is lost in most laboratory strains, and displayed elevated expression of FLO genes. None of these effects is observed upon the destruction of CAF-I. In contrast, the mutations that caused flocculation did not affect gene silencing at the mating type and subtelomeric loci. We conclude that dysfunctional CAF-I produces severe phenotypes, which reveal a possible role of CAF-I in the coordination of DNA replication, chromatin reassembly and cell cycle progression. Our study highlights the role of phosphorylation of Cac1p by CDK and a putative role for DDK in the transmission and re-assembly of chromatin during DNA replication.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.