Abstract

β2-Spectrin is critical for integrating membrane and cytoskeletal domains in excitable and nonexcitable cells. The role of β2-spectrin for vertebrate function is illustrated by dysfunction of β2-spectrin-based pathways in disease. Recently, defects in β2-spectrin association with protein partner ankyrin-B were identified in congenital forms of human arrhythmia. However, the role of β2-spectrin in common forms of acquired heart failure and arrhythmia is unknown. We report that β2-spectrin protein levels are significantly altered in human cardiovascular disease as well as in large and small animal cardiovascular disease models. Specifically, β2-spectrin levels were decreased in atrial samples of patients with atrial fibrillation compared with tissue from patients in sinus rhythm. Furthermore, compared with left ventricular samples from nonfailing hearts, β2-spectrin levels were significantly decreased in left ventricle of ischemic- and nonischemic heart failure patients. Left ventricle samples of canine and murine heart failure models confirm reduced β2-spectrin protein levels. Mechanistically, we identify that β2-spectrin levels are tightly regulated by posttranslational mechanisms, namely Ca(2+)- and calpain-dependent proteases. Furthermore, consistent with this data, we observed Ca(2+)- and calpain-dependent loss of β2-spectrin downstream effector proteins, including ankyrin-B in heart. In summary, our findings illustrate that β2-spectrin and downstream molecules are regulated in multiple forms of cardiovascular disease via Ca(2+)- and calpain-dependent proteolysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.