Abstract

Alzheimer's disease (AD) is characterized by cognitive decline and neuronal network dysfunction, but the underlying mechanisms remain unknown. In the hippocampus, microcircuit activity during learning and memory processes is tightly controlled by O-LM interneurons. Here, we investigated the effect of beta-amyloidosis on O-LM interneuron structural and functional connectivity, combining two-photon invivo imaging of synaptic morphology, awake Ca2+ imaging, and retrograde mono-transsynaptic rabies tracing. We find severely impaired synaptic rewiring that occurs on the O-LM interneuron input andoutput level in a mouse model of AD. Synaptic rewiring that occurs upon fear learning on O-LM interneuron input level is affected in mice with AD-like pathology. This process requires the release of acetylcholine from septo-hippocampal projections. We identify decreased cholinergic action on O-LM interneurons in APP/PS1 mice as a key pathomechanism that contributes to memory impairment ina mouse model, with potential relevance for humanAD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.