Abstract
Evolutionary shifts among radiate, disciform and discoid flowerheads have occurred repeatedly in a number of major lineages across the Asteraceae phylogeny; such transitions may also appear within evolutionarily young groups. Although several studies have demonstrated that CYC2 genes partake in regulating floral morphogenesis in Asteraceae, the evolution of capitulum forms within a recently diverging lineage has remained poorly understood. Here, we study the molecular regulation of the shift from a radiate to a disciform capitulum within the Chrysanthemum group. This is a recently radiating group mainly comprising two genera, Chrysanthemum and Ajania, that are phylogenetically intermingled but distinct in flowerhead morphology: Chrysanthemumspp. with radiate capitula and Ajaniaspp. with disciform capitula. We found that the morphogenesis of zygomorphy in the marginal floret in Ajania was disrupted soon after floral primordium emergence; CYC2g, one of the CYC2 copies that was expressed prominently in the ray floret of Chrysanthemum was not expressed in flowerheads of Ajania. Weakening the expression of ClCYC2g in Chrysanthemum lavandulifolium led to the gradual transition of a ray flower toward the disc-like form. Molecular evolutionary analyses indicated that the disciform capitulum might have evolved only once, approximately 8Mya, arising from dysfunction of the CYC2g orthologs. A 20-nt deletion, including a putative TATA-box of the Ajania-type CYC2g promoter, appeared to inhibit the expression of the gene. Considering the divergent habitats of Chrysanthemum and Ajania, we propose that the shift from radiate to disciform capitulum must have been related to changes in pollination strategies under selective pressure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.