Abstract

A space reactor power system (SRPS) has been developed for avoidance of single point failures in reactor cooling and energy conversion. The sectored compact reactor (SCoRe) in this system is lithium-cooled and the reactor core is divided into six equal sectors with liquid metal heat pipes dividers. These reactor sectors are neutronically, but not thermal-hydraulically, coupled. Each sector has its own primary and secondary circulating lithium loops, which are thermally coupled both in a SiGe thermoelectric (TE) power conversion assembly (PCA) and a thermoelectric conversion assembly (TAC) that powers the electromagnetic pumps in the primary and secondary loops. Each secondary loop also has a separate, segmented radiator panel that is optimized for low specific mass and low liquid lithium inventory. The primary loops transport the thermal power generated in the reactor to six PCAs that nominally supply a total of 111.5 kW e to the load at 450 V DC. Each of the 12 primary and secondary loops has its own bellows-type accumulator that is designed to regulate the lithium pressures in the loops. A dynamic simulation model of this thermoelectric SRPS (DynMo-TE) has been developed and used to investigate the transient operation of the system during a startup from a fully-thawed condition at 600 K, to nominal steady-state operation at which the lithium coolant exits the reactor at only 1179 K. Also investigated is the load-following characteristic of the SCoRe-TE SRPS, following a change in the electrical load demand.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call