Abstract
We study the value and the optimal strategies for a two-player zero-sum optimal stopping game with incomplete and asymmetric information. In our Bayesian setup, the drift of the underlying diffusion process is unknown to one player (incomplete information feature), but known to the other one (asymmetric information feature). We formulate the problem and reduce it to a fully Markovian setup where the uninformed player optimises over stopping times and the informed one uses randomised stopping times in order to hide their informational advantage. Then we provide a general verification result that allows us to find the value of the game and players’ optimal strategies by solving suitable quasi-variational inequalities with some nonstandard constraints. Finally, we study an example with linear payoffs, in which an explicit solution of the corresponding quasi-variational inequalities can be obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.