Abstract

Generative Adversarial Networks (GANs) are widely-used generative models for synthesizing complex and realistic data. However, mode collapse, where the diversity of generated samples is significantly lower than that of real samples, poses a major challenge for further applications. Our theoretical analysis demonstrates that the generator loss function is non-convex with respect to its parameters when there are multiple real modes. In particular, parameters that result in generated distributions with perfect partial mode coverage of the real distribution are the local minima of the generator loss function. To address mode collapse, we propose a unified framework called Dynamic GAN. This method detects collapsed samples in the generator by thresholding on observable discriminator outputs, divides the training set based on these collapsed samples, and trains a dynamic conditional model on the partitions. The theoretical outcome ensures progressive mode coverage and experiments on synthetic and real-world data sets demonstrate that our method surpasses several GAN variants. In conclusion, we examine the root cause of mode collapse and offer a novel approach to quantitatively detect and resolve it in GANs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call