Abstract

In animal cells, a single cytoplasmic dynein motor mediates microtubule minus-end-directed transport, counterbalancing dozens of plus-end-directed kinesins. The remarkable ability of dynein to interact with a diverse cargo spectrum stems from its tightly regulated recruitment of cargo-specific adaptor proteins, which engage the dynactin complex to make a tripartite processive motor. Adaptor binding is governed by the homologous dynein light intermediate chain subunits LIC1 (DYNC1LI1) and LIC2 (DYNC1LI2), which exist in mutually exclusive dynein complexes that can perform both unique and overlapping functions. The intrinsically disordered and variable C-terminal domains of the LICs are indispensable for engaging a variety of structurally divergent adaptors. Here, we hypothesize that numerous spatiotemporally regulated permutations of posttranslational modifications of the LICs, as well as of the adaptors and cargoes, exponentially expand the spectrum of dynein-adaptor-cargo complexes. We thematically illustrate the possibilities that could generate a vast set of biochemical variations required to support the wide range of dynein functions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call