Abstract

The multi-functional molecular motor cytoplasmic dynein performs diverse essential roles during mitosis. The mechanistic importance of the dynein Light Intermediate Chain homologs, LIC1 and LIC2 is unappreciated, especially in the context of mitosis. LIC1 and LIC2 are believed to exist in distinct cytoplasmic dynein complexes as obligate subunits. LIC1 had earlier been reported to be required for metaphase to anaphase progression by inactivating the kinetochore-microtubule attachment-sensing arm of the spindle assembly checkpoint (SAC). However, the functional importance of LIC2 during mitosis remains elusive. Here we report prominent novel roles for the LIC2 subunit of cytoplasmic dynein in regulating the spindle assembly checkpoint. LIC2 depletion in mammalian cells led to prolonged metaphase arrest in the presence of an active SAC and also to stretched kinetochores, thus implicating it in SAC inactivation. Quantitative fluorescence microscopy of SAC components revealed accumulation of both attachment- and tension-sensing checkpoint proteins at metaphase kinetochores upon LIC2 depletion. These observations support a stronger and more diverse role in checkpoint inactivation for LIC2 in comparison to its close homolog LIC1. Our study uncovers a novel functional hierarchy during mitotic checkpoint inactivation between the closely related but homologous LIC subunits of cytoplasmic dynein. These subtle functional distinctions between dynein subpopulations could be exploited to study specific aspects of the spindle assembly checkpoint, which is a key mediator of fidelity in eukaryotic cell division.

Highlights

  • The fidelity of eukaryotic mitotic cell divisions is imperative for viability and function of the daughter cells, and to ensure that the two daughters contain the correct dose of chromosomes

  • There has been no study relating to the role of Light intermediate chain 2 (LIC2) in mediating metaphase to anaphase progression by acting on the spindle assembly checkpoint

  • The LIC2 subunit defines a separate sub-fraction of cytoplasmic dynein (LIC2-dynein) distinct from the one populated by Light Intermediate Chain 1 (LIC1) (LIC1-dynein) [17, 20, 21]

Read more

Summary

Introduction

The fidelity of eukaryotic mitotic cell divisions is imperative for viability and function of the daughter cells, and to ensure that the two daughters contain the correct dose of chromosomes. Precise mitotic regulation is ensured through multiple pathways and events at the various stages of mitosis in the mother cell. Mis-regulation of these critical pathways or slippage through these regulatory mechanisms leads to aberrant mitosis, chromosome mis-segregation. Differential Functions of Dynein LICs in Mitosis

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.