Abstract
“Vital” dyes such as fluorescein and rose bengal are used clinically to evaluate ocular surface health; however, staining mechanisms remain poorly understood. Recent evidence suggests that sublethal cell damage stimulates fluorescein dye uptake. Since damage can also stimulate reparative plasma membrane remodeling, we hypothesized that dye uptake occurs via endocytic vesicles. Using an oxidative stress model, we show that damage to relatively undifferentiated monolayer cultures of human corneal epithelial cells stimulates uptake of fluorescein and rose bengal dyes and also stimulates endocytosis. Importantly, dye uptake was blocked by co-treatment with three different endocytosis inhibitors. Damage to stratified and differentiated corneal epithelial cell cultures, which are a better model of the ocular surface, also stimulated dye uptake; however, endocytosis was not stimulated in this case, and two of the inhibitors did not block dye uptake. The exception was the inhibitor Dynasore and its more potent analogue Dyngo-4a, small molecules that target dynamin family GTPases, but also have off-target effects on the plasma membrane. Significantly, while Dynasore blocked stress-stimulated dye uptake at the ocular surface of ex vivo mouse eyes when treatment was performed at the same time as eyes were stressed, it had no effect when used after stress was applied and the ocular surface was already damaged. Thus, Dynasore could not be working by inhibiting endocytosis. Employing cytotoxicity and western blotting assays, we demonstrate an alternative mechanism, showing that Dynasore is remarkably protective of cells and their surface glycocalyx, preventing damage due to oxidative stress, and thus precluding dye entry. These unexpected and novel findings provide greater insight into mechanisms of vital dye uptake and emphasize the importance of using a differentiated cell culture model for such studies. They also suggest that Dynasore and analogues might be used therapeutically to protect the ocular surface and to treat ocular surface disease.
Highlights
The wet ocular surface comprises the stratified squamous mucosal epithelia of the cornea/conjunctiva and the overlying tear film [1]
Oxidative stress stimulates vital dye uptake linked with sublethal cell damage The goal of our first set of experiments was to characterize and validate our oxidative stress model in monolayer cultures of human corneal epithelial cells, referencing the two recent studies discussed in the Introduction [20, 21]
In agreement with the report of Bakkar and colleagues [20], fluorescein dye uptake stimulated by oxidative stress was inhibited to 35% when the culture temperature was reduced to ambient, and to 10% when reduced to 4 ̊C
Summary
The wet ocular surface comprises the stratified squamous mucosal epithelia of the cornea/conjunctiva and the overlying tear film [1]. These cells are continually renewed in a process whereby daughter cells generated by division of basal cells at the basement membrane are displaced upward in the cell layers, at the same time undergoing terminal differentiation. Cells in the apical cell layer are morphologically and biochemically very different, from cells in the basal layer As they approach the surface, cells increasingly flatten and begin to express mucosal markers in a polarized manner, including membrane-associated mucins such as MUC16, that emanate from specialized membrane folds on the apical cell layer called microplicae. Complete turnover of the ocular surface epithelia occurs in 5–7 days [7, 8]
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.