Abstract
Our work tackles the fundamental challenge of image segmentation in computer vision, which is crucial for diverse applications. While supervised methods demonstrate proficiency, their reliance on extensive pixel-level annotations limits scalability. We introduce DynaSeg, an innovative unsupervised image segmentation approach that overcomes the challenge of balancing feature similarity and spatial continuity without relying on extensive hyperparameter tuning. Unlike traditional methods, DynaSeg employs a dynamic weighting scheme that automates parameter tuning, adapts flexibly to image characteristics, and facilitates easy integration with other segmentation networks. By incorporating a Silhouette Score Phase, DynaSeg prevents undersegmentation failures where the number of predicted clusters might converge to one. DynaSeg uses CNN-based and pre-trained ResNet feature extraction, making it computationally efficient and more straightforward than other complex models. Experimental results showcase state-of-the-art performance, achieving a 12.2% and 14.12% mIOU improvement over current unsupervised segmentation approaches on COCO-All and COCO-Stuff datasets, respectively. We provide qualitative and quantitative results on five benchmark datasets, demonstrating the efficacy of the proposed approach. Code available at \\url{https://github.com/RyersonMultimediaLab/DynaSeg}
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.