Abstract

The magnetic activity of solar-type stars generally increases with stellar rotation rate. The increase, however, saturates for fast rotation. The Babcock-Leighton mechanism of stellar dynamos saturates as well when the mean tilt angle of active regions approaches ninety degrees. Saturation of magnetic activity may be a consequence of this property of the Babcock-Leighton mechanism. Stellar dynamo models with a tilt angle proportional to the rotation rate are constructed to probe this idea. Two versions of the model - treating the tilt angles globally and using Joy's law for its latitude dependence - are considered. Both models show a saturation of dynamo-generated magnetic flux at high rotation rates. The model with latitude-dependent tilt angles also shows a change in dynamo regime in the saturation region. The new regime combines a cyclic dynamo at low latitudes with an (almost) steady polar dynamo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.