Abstract

Current continuation describes the computational study concerning with the unsteady flow of Eyring–Powell magneto nanoliquid over a bidirectionally deformable surface. Transference of activation energy is used in the improvement of binary chemical reaction. Nonlinear significance of thermal radiation is also incorporated in the energy equation. Investigation has been carried out through convective Nield’s boundary restrictions. Firstly, useful combination of variables has been implemented to alter the governing PDEs into ODEs. Later on, Keller-Box approach has been adopted to obtain the numerical solution of the physical problem. Physical interpretations of obtained results are also described for temperature and mass concentration distributions through various graphs. Rate of heat transportation has been explained through tabular data for acceptable ranges of involved engineering parameters. It is detected that escalating amount of Brownian constraint provides a constant temperature distribution. It is also inspected through present investigation that escalating amounts of activation energy factor, thermophoresis parameter, radiation parameter, Biot number and temperature ratio parameter improve the concentration field. Moreover, the amount of heat transport has considerably improved by increasing the amounts of temperature controlling indices and Biot number. Convergence analysis and error estimations of the numerical solution are also presented through various mesh refinement levels of the computational domain. Finally, comparison benchmarks with the restricted cases have been presented for the validation of the results obtained through the present parametric investigation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call