Abstract

A great deal of attention has lately been given to addressing software bugs such as errors in operating system drivers or security bugs. However, there are many other lesser known errors specific to individual applications or APIs and these violations of application-specific coding rules are responsible for a multitude of errors. In this paper we propose DynaMine, a tool that analyzes source code check-ins to find highly correlated method calls as well as common bug fixes in order to automatically discover application-specific coding patterns. Potential patterns discovered through mining are passed to a dynamic analysis tool for validation; finally, the results of dynamic analysis are presented to the user.The combination of revision history mining and dynamic analysis techniques leveraged in DynaMine proves effective for both discovering new application-specific patterns and for finding errors when applied to very large applications with many man-years of development and debugging effort behind them. We have analyzed Eclipse and jEdit, two widely-used, mature, highly extensible applications consisting of more than 3,600,000 lines of code combined. By mining revision histories, we have discovered 56 previously unknown, highly application-specific patterns. Out of these, 21 were dynamically confirmed as very likely valid patterns and a total of 263 pattern violations were found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.